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1 | INTRODUCTION

Metabolic syndrome (MetS), also commonly known as the insulin
resistance syndrome, is a cluster of physiological abnormalities associ-

ated with the development of cardiovascular disease (CVD), Type

Abstract

That metabolic syndrome (MetS) is associated with age-related cognitive decline is well
established. The neurobiological changes underlying these cognitive deficits, however,
are not well understood. The goal of this study was to determine whether MetS is asso-
ciated with regional differences in gray-matter volume (GMV) using a cross-sectional,
between-group contrast design in a large, ethnically homogenous sample. T1-weighted
MRIs were sampled from the genetics of brain structure (GOBS) data archive for
208 Mexican-American participants: 104 participants met or exceeded standard criteria
for MetS and 104 participants were age- and sex-matched metabolically healthy con-
trols. Participants ranged in age from 18 to 74 years (37.3 £ 13.2 years, 56.7% female).
Images were analyzed in a whole-brain, voxel-wise manner using voxel-based morphom-
etry (VBM). Three contrast analyses were performed, a whole sample analysis of all
208 participants, and two post hoc half-sample analyses split by age along the median
(85.5 years). Significant associations between MetS and decreased GMV were observed
in multiple, spatially discrete brain regions including the posterior cerebellum, brainstem,
orbitofrontal cortex, bilateral caudate nuclei, right parahippocampus, right amygdala,
right insula, lingual gyrus, and right superior temporal gyrus. Age, as shown in the post
hoc analyses, was demonstrated to be a significant covariate. A further functional inter-
pretation of the structures exhibiting lower GMV in MetS reflected a significant involve-
ment in reward perception, emotional valence, and reasoning. Additional studies are
needed to characterize the influence of MetS's individual clinical components on brain

structure and to explore the bidirectional association between GMV and MetS.

KEYWORDS

genetics of brain structure, GOBS, gray matter volume, hypercholesterolemia, hyperglycemia,
hypertension, hypertriglyceridemia, insulin resistance, insulin resistance syndrome, metabolic
syndrome, MetS, Mexican-American, neuroimaging, obesity, T2DM, Type Il diabetes mellitus,

VBM, voxel-based morphometry, waist circumference

2 diabetes mellitus (T2DM) and early death (Reaven, 1988). It typically
comprises a combination of the following: central obesity measured
as waist circumference (WC), elevated triglycerides (TG), reduced
levels of high-density lipoprotein (HDL) cholesterol, increased fasting

plasma glucose (FPG), and elevated blood pressure (BP; Grundy et al.,
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2005). Epidemiological data suggest that 34.7% of Americans suffer
from MetS with a high prevalence (36.8%) in the Hispanic-American
population (Aguilar, Bhuket, Torres, Liu, & Wong, 2015). Age also
plays a role in the prevalence of MetS, such that more than 50% of all
adults over the age of 60 are afflicted. In addition to T2DM and CVD,
MetS is associated with nonalcoholic fatty liver disease, polycystic
ovarian syndrome, several types of cancer (e.g., colon cancer and
breast cancer), arthritis, and fibromyalgia (Byrne & Wild, 2011). Most
striking, T2DM, and MetS have shown to be associated with demen-
tia, with Mexican Americans exhibiting greater risk than those of
European ancestry (Haan et al., 2003). Indeed, individuals with MetS
commonly display cognitive impairments in learning and memory,
executive function, and generalized processing speed (Cavalieri et al.,
2010; Yates, Sweat, Yau, Turchiano, & Convit, 2012). The genetic
underpinnings of this observation remain unknown, but are suggested
to be partly due to differences in insulin metabolism associated with
a genetic admixture (Lee, Zabolotny, Huang, Lee, & Kim, 2016).
Additionally, cognitive decline following longstanding MetS has been
linked to the development of vascular dementia and Alzheimer's dis-
ease (AD; Exalto, Whitmer, Kappele, & Biessels, 2012; Frisardi et al.,
2010; Vanhanen et al., 2006).

Neurodegenerative diseases are found to correlate with com-
orbidities of MetS, such as obesity. These include frontotemporal
dementia, cerebrovascular disease, and AD, among others (Lee &
Mattson, 2014). Although there are numerous mechanistic hypotheses
as to how these degenerative changes occur, several have gained par-
ticular notoriety. One such hypothesis suggests that dysregulated insu-
lin receptor binding/activation plays a role in neuronal atrophy of the
reward networks (nucleus accumbens, amygdala, VTA, striatum) and
learning and memory networks (hippocampus, OFC, temporal lobe;
Byrne & Wild, 2011). Impaired insulin receptor binding in the hippo-
campus, a structure known to express high levels of insulin receptors, is
presumed to influence the development of AD (De Felice, Lourenco, &
Ferreira, 2014). The hypothesis of AD-related central nervous system
(CNS) insulin resistance, coupled with observations that T2DM is asso-
ciated with an increased risk of developing AD (Ott et al., 1996;
Stranahan, 2015), has led researchers ask whether peripheral metabolic
biomarkers could be used to predict neurological decline (Chatterjee &
Mudher, 2018; Pruzin, Nelson, Abner, & Arvanitakis, 2018). Besides
brain insulin resistance, other mechanisms such as neuroinflammation,
oxidative stress, and abnormal brain lipid metabolism have been pro-
posed as pathophysiological contributors to neurocognitive decline in
the MetS brain (Yates et al., 2012).

Structural abnormalities in T2DM patients were first observed in a
cohort of genetically homogenous Dutch subjects and found that indi-
viduals with T2DM had significantly decreased hippocampal and
amygdalar gray-matter volumes (GMVs) compared to normal controls
(Den Heijer et al., 2003). Their conclusions gave credence to an earlier
study conducted in the Netherlands (The Rotterdam Study), which
found a significant correlation between insulin-dependent T2DM and
AD (Ott et al., 1996).

Neuroimaging is an effective method for investigating the neuro-

biological correlates of cognitive decline in a human population with

MetS. Comorbidities of MetS, namely obesity, insulin resistance, and
T2DM, have been studied extensively using functional imaging
(Byrne & Wild, 2011). Early positron emission tomography (PET) stud-
ies comparing insulin resistant subjects with normal controls, reported
decreased gray matter glucose uptake in the dopaminergic reward cir-
cuit (amygdalae, hippocampi, and orbitofrontal cortex) and increased
uptake in the striatum (nucleus accumbens, caudate, and putamen),
insula and anterior cingulate (Anthony et al., 2006). Task-activation
fMRI studies (food picture, smell, and taste paradigms) have also
shown that glucose infusion is associated with discrete brain activa-
tion patterns and prandial satiety, correlating with the brain's reward
network (Huerta, Sarkar, Duong, Laird, & Fox, 2014; Michaud, Vainik,
Garcia-Garcia, & Dagher, 2017).

Voxel-based morphometry (VBM), is a widely-accepted research
technique employed to identify subtle, disease-related structural
changes that cannot be easily inferred through region-specific or
global gray matter volumetric analyses. VBM achieves this via group-
averaging and registration to a standard brain space comparing gray
matter densities between cases and controls. This method is optimal
for identifying disease-specific atrophy patterns computed in a univar-
iate, voxel-wise manner (Ashburner & Friston, 2000). In the literature,
we know of only one other study that has looked at cortical thickness
and subcortical volume changes (using ANCOVA instead of VBM with
n = 86) explicitly in individuals with MetS (Song et al., 2014). How-
ever, only five VBM studies (with n ranging from 32 to 54) have inves-
tigated the neuroanatomical effects of T2DM (Wu, Lin, Zhang, & Wu,
2017). Other VBM studies have emphasized the GMV effects of
MetS's comorbidities, such as the combined effects of T2DM and
hypertension (Tchistiakova et al., 2014) and obesity (Masouleh et al.,
2016). Allostatic load, the accumulated multisystem physiological
response to chronic stress that strongly correlates with MetS has also
been studied using VBM as a predictor of stroke, diabetes, and neuro-
anatomical integrity (Zsoldos et al., 2018).

For this retrospective study, we utilized previously acquired neu-
roimaging data from a homogenous Mexican-American cohort com-
prising an extended-pedigree imaging dataset known as the Genetics
of Brain Structure (GOBS) image archive of San Antonio, TX. In this
dataset, participants were recruited at random from the San Antonio
community as a measure to minimize selection bias. This archive pres-
ented a unique opportunity to study the neurobiological effects of
MetS because of the population's increased propensity, both biologi-
cal and environmental, to develop MetS and its comorbidities. The
sample is large enough to conduct a statistically powerful analysis,
and includes a wide range of relevant data.

Participants were divided into two groups, randomly matched
MetS and metabolically healthy controls (hereafter also referred to as
“controls”), who differed only in metabolic status while controlling for
age and sex. VBM was subsequently used to identify GMV differences
between groups. After initial analysis, the large group was further sub-
divided in two post hoc analyses of “young” and “old” half samples to
assess age-related effects. Lastly, BrainMap®, an imaging archive

designed for meta-analysis and meta-analytic data interpretation, was
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used to interpret behavioral, paradigm class, and disease covariates
from our results (Lancaster et al., 2012).

We hypothesized: (a) that a group contrast VBM analysis will
reveal discrete MetS-specific GMV differences; (b) that the patterns
observed would recapitulate regions implicated in AD pathology (per
the CNS insulin resistance hypothesis); and, (c) that applying meta-
analytic interpretive tools (BrainMap.org) to the VBM-derived regional
deficits would confirm a cognitive signature corresponding to cogni-

tive deficits previously reported in MetS.

2 | MATERIALS AND METHODS

2.1 | Participants

The goal of the GOBS dataset is to localize, identify, and characterize
genes/quantitative trait loci associated with variations in brain struc-
ture and function (Winkler et al., 2010). The GOBS dataset has been
acquired in three blocks of acquisitions, corresponding to the original
grant and two renewals. In the original block of acquisitions, the
emphasis was almost entirely on imaging and cognitive/behavioral
phenotypes with BMI and health history being the only phenotypes
referable to metabolic syndrome. In the second block of acquisitions,
blood chemistries (including fasting plasma glucose), a lipid panel, and
waist circumference (WC) were added. In the third block of acquisi-
tions, BP was added. Participants in the present analysis were drawn
only from acquisition Blocks 2 and 3. In all three blocks of acquisition,
participants were drawn from the same extended-pedigree, Mexican-
American families. At the time this study was conducted, a total of
1,911 individuals were enlisted in the GOBS dataset.

In acquisition Blocks 2 and 3, neuroanatomic, neurocognitive, and
biometric phenotypes were obtained on each participant. Participants
were subjected to the standardized Composite International Diagnostic
Interview (CIDI; Kessler, Andrews, Mroczek, Ustun, & Wittchen, 1998)

FIGURE 1 Participant selection
pipeline from the original GOBS dataset
applying MetS criteria scores based on a
composite of the International Diabetes
Federation (IDF) and National Cholesterol
Education Program-Adult Treatment Plan
111 (NCEP-ATP lll). Criteria for
metabolically healthy control group was
determined by including participants with
a composite MetS score of <1.5. Criteria
for MetS case group was determined by
including participants fulfilling the WC
criteria of the IDF and achieving a MetS
score of 23.0. A few borderline
individuals (3 controls and 6 MetS) were
added to provide age- and sex-matched
symmetry in the final analysis

and the Mini-International Neuropsychiatric Interview (MINI-Plus) for
DSM-IV and ICD-10 psychiatric disorders (Sheehan et al., 1998). Blood
samples were collected after a 12-hr fast and processed in order to
obtain blood chemistry and blood lipid data, such as triglycerides, cho-
lesterol, and fasting plasma glucose.

Acquiring BP values did not become standard protocol until acquisi-
tion Block 3. This left ~70% of the eligible participants from the GOBS
cohort without measured BP. However, from the 835 participants with
all pertinent imaging and lipid data (Figure 1), a total of 356 (or 42.6%)
had available BP data. Excluding participants with no BP values, but
who nonetheless had all other pertinent data, would have left us with a
small and underpowered cohort. We overcame this obstacle by diag-
nosing our data as missing at random (MAR), indicating that there is a
systematic relationship between observed data (the 42.6% of BP data
available) and missing values (the 57.4% of missing BP data). BP can
therefore be imputed from available observed BP data and other
observed variables known to correlate with BP (e.g., age, sex, height,
weight, WC, fasting plasma glucose, triglycerides, blood urea nitrogen,
creatinine, sodium, potassium, chloride, calcium, smoking status, total
cholesterol, high density, low density, and very low-density lipoprotein
cholesterol, and previous diagnosis of hypertension; Little & Rubin,
2002). Missing BP values were thus imputed using a well-validated
model-based full information maximum likelihood estimation from the
aforementioned observed variables (Enders, 2010).

As a cross-check we evaluated whether the MAR assumption was
tenable and performed sensitivity analysis under the missing not at ran-
dom (MNAR) assumption. We employed the fully conditional specifica-
tion for multiple imputation to impute BP values for participants in the
study group based on observed values of participants not included in
the study group (Ratitch & O'Kelly, 2011). Using this test of model sen-
sitivity, we were able to discern whether differences existed between
groups on BP values assuming the MAR versus MNAR assumption. The
results of the sensitivity analysis yielded the same conclusions as those
observed under MAR.
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2.2 | Image acquisition

MRI acquisition was carried out on a 3T Siemens Tim MRI scanner at
the University of Texas Health Science Center at San Antonio's Research
Imaging Institute. An 8-element high-resolution phase array head coil
equipped with foam padding was employed to comfortably restrict head
motion. A standard localizer image was obtained for each participant for
determining head placement, followed by a standard shim sequence.
Seven high quality T1-weighted 3D structural images were collected per
participant via a TurboFLASH sequence with an adiabatic inversion
recovery pulse (TE = 3.04 ms, TR = 2000 ms, Tl = 795 ms, flip angle = 8°,
NEX = 6) optimized to achieve a gray/white contrast of ~25% with sig-
nal to noise ratio of 25. Each image contained 0.8 mm?® isotropic voxels
and a 20 cm field of view. Scan time per participant totaled 60 min. Each
of the seven MPRAGE T1-weighted images was motion corrected and
all were subsequently averaged to generate a single high-resolution ana-

tomical image per participant (Kochunov et al., 2006).

2.3 | Study sample

Of the 1,911 total participants in the GOBS cohort, we excluded
519 participants who were lacking successfully acquired T1-weighted
MRI scans, and 557 participants from the first acquisition phase who
were lacking full biometric data such as blood lipids and WC necessary
to establish a MetS diagnosis. Upon reviewing data obtained from CIDI
and MINI-Plus evaluations, we then excluded 122 participants with
past medical histories of stroke, neurosurgery, neurological diseases, or
Axis | psychiatric diagnoses (e.g., schizophrenia, bipolar disorder, major
depressive disorder, substance use disorder, and so on). Our final sam-
ple of neurologically and psychiatrically healthy individuals who met
basic imaging, psychiatric, biometric, and metabolic criteria totaled
713 participants.

We applied both the National Cholesterol Education Program Adult
Treatment Plan [l (NCEP-ATP Ill) and the International Diabetes Federa-
tion (IDF) criteria (Figure 1) to the selection of metabolically healthy and
MetS participants (Eckel & Cornier, 2014). The NCEP-ATP |l defines
MetS as patients meeting at least three of the following five criteria:
1. central obesity measured by WC (2102 cm in men, = 88 cm in
women), 2. raised TGs (= 150 mg/dL), 3. reduced HDL cholesterol
(<40 mg/dL in men, < 50 mg/dL in women), 4. raised FPG (> 110 mg/dL),
and 5. elevated BP (> 130 mmHg systolic or > 85 mmHg diastolic)
and/or diagnosis of HTN (Eckel & Cornier, 2014). Similarly, the IDF
defines MetS as a disease in which patients must exhibit central obesity
(WC of 294 cm for men, = 80 cm for women), along with at least two of
the following four criteria: 1. raised TGs (>150 mg/dL) and/or taking
reduced HDL cholesterol
(<40 mg/dL in men, < 50 mg/dL in women) and/or taking medication for

medication for hypertriglyceridemia, 2.

hypercholesterolemia, 3. raised BP (>130 mmHg systolic or >85 mmHg
diastolic) and/or taking medication for hypertension, and 4. raised FPG
(>100 mg/dL) and or having a diagnosis of T2DM (Grundy et al., 2005).
A score of 0-5 was generated for each of the 713 eligible partici-
pants based on how many components (WC, TG, HDL, FPG, and BP)
met the MetS criteria for NCEP-ATP Ill and IDF respectively

(Tables 1 and 2). For example, a male participant with a WC of 98 cm
would receive a score of 1 for WC under the IDF criteria, but receive a
score of O for WC under the NCEP-ATP Il criteria. Both the IDF and
NCEP-ATP Il scores were then averaged to give each participant a sin-
gle composite MetS score based on both criteria. A score of 3 or
greater would be considered indicative of MetS under the standards
for both criteria.

Metabolically healthy controls were selected from the remaining
713 eligible participants if they had a composite MetS score of 1.5 or
lower (n = 319) and MetS participants were selected if they had a
composite MetS score of 3 or higher (n = 255). From the latter group,
we further excluded MetS subjects who did not meet the IDF criteria
for WC (n = 7). We then employed an algorithm that optimally and
randomly age- and sex-matched the participants who met the study-
specific criteria for controls and for MetS. A total of 101 controls
(n = 44 males, n = 57 females; plus 3 borderline) and 98 MetS partici-
pants (n = 42 males, n = 56 females; plus 6 borderline) were matched
successfully (Figure 1). We included borderline individuals to optimally
configure the group-matching framework between age and sex that is
required for a two-group difference general linear model analysis. Bor-
derline control individuals had a composite score of 2. They did not
meet the <1.5 cut-off, nor the IDF or NCEP-ATP Il criteria for MetS.
Similarly, borderline MetS individuals had a composite score of 2.5,
meeting the IDF criteria for MetS, but not for NCEP-ATP Il

These criteria were derived in consultation with Dr. Ralph
DeFronzo, director of the Texas Diabetes Institute and were consid-
ered the best accepted estimates to define two groups that are meta-
bolically distinct as “healthy” and “MetS” (Miranda, DeFronzo, Califf, &
Guyton, 2005). Particular emphasis was made on defining the MetS
group as meeting at least the IDF criteria for WC. This emphasis is
important because central obesity as measured by WC is an easily
measurable biometric variable that closely correlates with insulin

resistance (Simonson & Kendall, 2005).

2.4 | VBM and univariate analysis

T1 structural images were acquired retrospectively from the GOBS
dataset. Freesurfer was used for initial processing with autoreconl
(motion correction, nonuniform intensity normalization, Talairach
transform computation, intensity normalization, and skull stripping;
Fischl, 2012). Brain-extracted data were then analyzed with FSL-VBM
(Douaud et al., 2007), an optimized VBM protocol carried out with
FSL tools (FMRIB Software Library; Good et al., 2001; Smith et al.,
2004). Structural images were gray matter-segmented and nonlinearly
registered to MNI-152 standard space (Andersson, Jenkinson, &
Smith, 2007). The resulting images were averaged, flipped along the
x-axis, and re-averaged to create a left-right symmetric, study-specific
gray matter template. All native gray matter images were nonlinearly
registered to this study-specific template and “modulated” to correct
for local expansion (or contraction) due to the nonlinear component
of the spatial transformation. The modulated gray matter images were

smoothed with an isotropic Gaussian kernel (sigma = 3 mm).
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TABLE 1 Demographics, MetS components and neuroanatomical characteristics of participants
Total Total Young Young Oold old
control (SD) MetS (SD) control (SD) MetS (SD) control (SD) MetS (SD)

[Female] n=104[59] n=104[59] p n=52[23] n=52[23] p n=52[22] n=52[22] p
Age (years) 37.3(13.2) 37.3(13.2) 996  26.4(4.6) 26.5 (4.6) 932 48.1(9.6) 48.1 (9.8) 976
Education (years) 12.2(2.7) 12.3 (2.6) 872 12.7(1.8) 12.4(2.0) 486 11.7 (34) 12.1(3.2) .550
MetS components
Waist circumference (cm) 84.1(11.2) 110.0(11.2) <.001* 80.3(9.1) 110.4(12.1) <.001* 87.9(11.9) 109.6(10.4) <.001*
Triglycerides (mg/dL)? 87.8(31.5) 223.2(95.6) <.001* 855(35.1) 220.0(87.7) <.001* 90.0(27.7) 226.5(103.8) <.001*
HDL cholesterol (mg/dL) 61.8(154) 38.8(8.8) <.001* 60.1(14.5) 38.3(8.7) <.001* 63.5(16.2) 39.3(9.0) <.001*
Fasting plasma glucose (mg/dL) 86.3(7.5) 119.8(55.1) <.001* 86.3(6.8) 104.7 (49.2) .010* 86.3(8.3) 134.9 (56.9) <.001*
Systolic blood pressure (mmHg)® 113.4 (15.2) 126.7 (17.3) <.001* 113.1(15.17) 123.8(14.1) <.001* 113.8(15.4) 129.5(19.8) <.001*
Diastolic blood pressure (nmHg)®  69.3(10.9)  77.4(11.3) <.001* 68.9(10.6) 76.7(10.3) <.001* 69.8(11.2) 78.0(124) .001*
IDF score 0.57(0.63) 4.11(0.72) <.001* 0.37(0.60) 3.75(0.65) <.001* 0.77(0.61) 4.46(0.61) <.001*
NCEP-ATP Ill score 0.24(049) 3.60(0.90) <.001* 0.15(0.41) 3.40(0.72) <.001* 0.33(0.55) 3.79(1.02) <.001*
Composite MetS score 0.40(0.51) 3.85(0.74) <.001* 0.23(0.46) 3.58(0.64) <.001* 0.55(0.53) 4.13(0.74) <.001*
Other lipid measures of interest

Total cholesterol (mg/dl) 1744 (31.7) 202.5(45.3) <.001* 167.9(30.8) 197.0(42.1) <.001* 180.8(31.6) 208.0(48.0) .001*

LDL cholesterol (mg/dL) 95.0(28.3) 119.2(40.3) <.001* 90.7(28.0) 114.5(37.8) <.001* 99.3(28.2) 123.9(42.6) .001*

BMI (kg/m?) 24.3(3.8) 345(5.5) <.001* 23.3(3.5) 347 (5.6) <.001* 25.4(3.9) 342(5.5) <.001*
Whole brain gray and white matter measures derived from VBM

Average gray matter density 0.482 (0.028) 0.474 (0.032) .072 0.495(0.018) 0.493(0.019) 445 0.468 (0.030) 0.456(0.032) .045%

Average white matter density  0.378 (0.013) 0.373(0.014) .008* 0.370(0.010) 0.365(0.016) .413 0.372(0.007) 0.374(0.019) .012*

Abbreviations: BMI, body mass index; HDL, high density lipoprotein cholesterol; IDF, International Diabetes Federation; LDL, low density lipoprotein;
NCEP-ATP lll, National Cholesterol Education Program Adult Treatment Plan Ill; SD, standard deviation; VBM, voxel-based morphometry.

*Two-sample t-test of group differences reported as significant p-value <.05.

2Excludes outliers with TG values >500 mg/dL.

PBP values obtained were generated in part by full-information maximum likelihood statistical modeling.

To compare MetS versus metabolically healthy control group differ-
ences in GMV, a two-group difference (two-sampled unpaired t-test)
analysis using voxel-wise general linear modeling (GLM) was applied in
a control vs. MetS contrast analysis involving all participants (n = 208)
with “years of education” as a nuisance covariate. Two separate post
hoc contrast analyses were subsequently conducted along age-
defined half-samples. We ran the GLM analysis with FSL's Randomize, a
nonparametric permutation-testing tool (10,000 permutations), that
corrects for multiple comparisons across voxels. Significance was deter-
mined at the voxel level using a family-wise error (FWE) correction
(p < .05). In VBM, the null hypothesis states that there is no difference
in GMV between the groups being studied. The null hypothesis is
refuted when statistical maps are generated exhibiting voxels, often
clustered together, that overcome a predetermined and study-specific
statistical threshold (e.g., FWE p05, in the case of the present study;
Whitwell, 2009). We did not further correct for the total number of
VBMs performed (i.e., 3) since the post hoc age-defined half samples
were independent of the large primary analysis.

The output comprised of threshold-free cluster enhancement
(TFCE) based statistical parametric maps depicting locations of gray
matter differences between MetS and metabolically healthy control
groups. TFCE avoids the arbitrary definition of an initial cluster-forming

threshold, as in cluster-based thresholding, by enhancing cluster-like

structures while maintaining a voxel-wise approach (Smith & Nichols,
2009). The final results were overlaid onto the MNI-152 standard tem-
plate. Maxima locations for the large 208-subject contrast were
derived from the Talairach Daemon (Table 3; Lancaster et al., 2000).
A summary of the VBM image analysis pipeline is shown in Figure 2.

2.5 | Post hoc analysis on age effects

Two additional post hoc analyses involving the subdivided large group
of 208 participants were performed using identical thresholds and per-
mutations. In this analysis we divided participants by the median age
(85.5 years) and grouped them into half samples termed “young” and
“old.” The “young” group included all participants with age < 35 years
264 *
healthy controls and 52 MetS participants. The “old” group included all

(mean = 4.6 years; range = 18-35 years); 52 metabolically

participants with age 236 (mean = 48.1 + 9.6 years; range = 36-74-
years); 52 metabolically healthy controls and 52 MetS participants

(Tables 1 and 2, Figure 3).

2.6 | Behavior, paradigm class, and disease analyses

BrainMap is a neuroimaging database which, at the time of this study,
contained 15,243 published functional imaging experiments (125,588
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TABLE 2

Metabolic syndrome components

International diabetes federation

Wiaist circumference: 41.3%

>96 cm in men, 280 cm in women

Triglycerides: 1.0%

2150 mg/dL and/or HTG Rx

HDL cholesterol: 3.8%

<40 mg/dL in men, <50 mg/dL in women and/or HCL Rx

Fasting plasma glucose: 1.0%

>100 mg/dL and/or T2DM dx

Blood pressure?: 13.5%

>130 mmHg systolic or 285 mmHg diastolic and/or HTN dx

Meet IDF criteria for MetS 0%
National cholesterol education program adult treatment plan Il

Waist circumference: 9.6%

>102 cm in men, 288 cm in women

Triglycerides: 1.0%

2150 mg/dL

HDL cholesterol: 2.9%

<40 mg/dL in men, <50 mg/dL in women

Fasting plasma glucose: 0%

>110 mg/dL

Blood pressure?: 13.5%

>130 mmHg systolic or = 85 mmHg diastolic and/or HTN dx

Meet NCEP-ATP Il criteria for MetS 0%
Previously diagnosed comorbidities

Hypertriglyceridemia 0%

Hypercholesterolemia 1.9%

Type Il diabetes mellitus 0%

Hypertension 3.8%

Percentage of participants meeting MetS criteria by group

Total control Total MetS Young control Young MetS Old control Old MetS

100% 23.1% 100% 59.6% 100%
93.3% 1.9% 94.2% 0% 92.3%
94.2% 3.8% 90.4% 3.8% 98.1%
60.6% 0% 38.5% 1.9% 78.8%
61.5% 11.5% 48.1% 15.4% 75.0%
100% 0% 100% 0% 100%
92.3% 1.9% 90.4% 17.3% 94.2%
87.5% 1.9% 94.2% 0% 80.8%
83.7% 1.9% 88.5% 3.8% 78.8%
33.7% 0% 14.8% 0% 51.9%
61.5% 11.5% 48.1% 15.4% 75.0%
87.5% 0% 90.4% 0% 84.6%
21.2% 0% 3.8% 0% 38.5%
33.7% 1.9% 11.5% 1.9% 55.8%
31.7% 0% 13.5% 0% 50%

35.6% 0% 17.3% 7.7% 53.8%

Abbreviations: Dx, previously diagnosed; HCL, hypercholesterolemia; HDL, high density lipoprotein cholesterol; HTG, hypertriglyceridemia; HTN,
hypertension; IDF, International Diabetes Federation; NCEP-ATP lll, National Cholesterol Education Program Adult Treatment Plan Ill; Rx, currently

receiving treatment; T2DM, Type 2 diabetes mellitus.

?BP values obtained were generated in part by full-information maximum likelihood statistical modeling.

locations) from 3,261 peer-reviewed publications and 3,151 published
VBM, or structural imaging experiments, (21,827 coordinates) from
994 peer-reviewed publications. BrainMap reports statistically signifi-
cant results from the published, peer-reviewed neuroimaging litera-
ture in the form of standardized coordinates that report functional
and structural effects (Fox, Lancaster, Laird, & Eickhoff, 2014). It
allows investigators to perform robust meta-analyses from thousands
of subjects, experiments, and paradigms using the standardized,
coordinate-based (x, y, z) mapping system. The results have been
coupled to experimental and behavioral conditions in the functional
task-driven database (Lancaster et al., 2012), and disease diagnoses in
the structural VBM database (Vanasse et al., 2018).

BrainMap's® Behavior and Paradigm Class analysis plugins are
invaluable meta-data inference function tools that quantitatively char-
acterize regions that are anatomically altered in MetS and show how
these regions relate to healthy brain functions (Crossley et al., 2014;
Smith et al., 2009). Using this method, we can test the hypothesis that

negative behavioral effects of MetS—specifically concerning impair-
ment of executive function, cognitive reasoning, and reward
perception— can be at least partially explained by structural changes in
the form of GMV loss (Crossley, Scott, Ellison-Wright, & Mechelli,
2015; Fox et al., 2014; Glahn et al., 2008). Similarly, BrainMap's Disease
Inference Function also uses meta-data inferencing to correlate GMV
changes in MetS to neurodegenerative diseases present in the
BrainMap VBM structural database (Kotkowski, Price, Fox, Vanasse, &
Fox, 2018; Vanasse et al., 2018). We can use this function to indepen-
dently quantify the degree of structural similarity between neurodegen-
erative diseases like AD and MetS using a z-score.

BrainMap's software allows for behavior, paradigm class, and dis-
ease comparisons by imputing a 3D spatial region of interest known
as a “mask.” Masks in this study were generated by the VBM analyses
and represent the regions of significant GMV reduction. The software
allows us to compare regions derived in our study to behaviors and

paradigm classes ascribed to a number of functional studies, or
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TABLE 3 Results of the whole-brain VBM analysis comparing GMV between groups (MetS: n = 104 vs. metabolically healthy control: n = 104

Metabolic syndrome VBM contrast analysis (n = 208)

Foci: MNI coordinates

Cluster size Max t-score
Cluster (voxels) X y z within cluster Cluster foci: MNI Daemon label
Brainstem 13,187 2 -28 —-48 4.98 Pons
L. Cerebellum 28,818 —-24 —-62 —46 5.73 L. Crus |
—44 -46 -30 3.62 L. Culmen
R. Cerebellum 24,419 20 —66 —46 5.44 R. Cerebellar tonsil
Orbitofrontal cortex 9,175 4 14 24 5.66 R. Rectal gyrus (BA11)
12 62 -22 3.90 R. Superior Frontal Gyrus (BA10)
12 44 -28 4.14 R. Medial frontal gyrus (BA11)
-6 14 -28 4.68 L. Rectal gyrus
-12 34 -32 3.64 L. Orbital gyrus (BA47)
-2 28 -30 4.49 L. Rectal gyrus (BA11)
L. Limbic lobe 891 -16 -28 -12 3.00 L. Parahippocampal gyrus
R. Limbic lobe 3,071 18 2 -18 4.25 Subcallosal gyrus (BA34)
27 -2 -16 3.60 R. Amygdala
R. insula 4,026 34 0 -12 3.73 R. Claustrum
42 -2 -8 341 R. Insula
L. Caudate 2,752 -12 16 10 4.70 L. Caudate body
R. Caudate 4,054 8 22 8 4.59 R. Caudate body
6 14 4 4.00 R. Caudate body
Cuneus 2,787 -4 —64 8 3.51 L. Cuneus
-6 -84 8 3.05 L. Lingual gyrus
R. Temporal lobe 2,444 70 -24 0 415 R. Superior temporal gyrus (BA22)
68 -12 -6 3.33 R. Middle temporal gyrus
Lingual gyrus 637 8 -98 4 3.19 R. Lingual gyrus

Results are significant at FWE p < .05, corrected for multiple comparisons at the voxel level.

Abbreviations: BA, Brodmann area; L., left; R., right.

diseases in VBM studies, from across the BrainMap database. This is
achieved by comparing our mask to a null reference of random spatial
distribution. Z-scores are generated for observed-minus-expected
values for each behavior sub-domain, or disease sub-domain in the case
of VBM, with the operative threshold z-score of 3.0 as comparable to a
group p-value of .05. This analysis has been previously validated in both
the behavior domain and paradigm class analyses (Lancaster et al.,
2012) and recently in disease class analyses (Kotkowski et al., 2018).
Due to a lack of inclusion of the cerebellum and brainstem in the vast
majority of task activation studies involving PET and fMRI within
the BrainMap database, the cerebellum and brainstem regions were
excluded from the ROl masks in this analysis.

3 | RESULTS

3.1 | Mass univariate VBM contrast analysis

A VBM contrast analysis was performed to investigate regional GMV
differences between age- and sex-matched metabolically healthy con-
trols (n = 104) and individuals meeting the criteria for MetS (n = 104;

see Tables 1 and 2, Figure 1). The most notable between-group differ-
ences were found in the following regions: the posterior cerebellum,
brainstem, orbitofrontal cortex (aka ventromedial prefrontal cortex),
bilateral caudate nuclei, right posterior insula, right amygdala, lingual
gyrus, and superior temporal gyrus (Figure 3, Table 3).

3.2 | Structural age differences

Age differences were observed when contrasting participants in the
post hoc age-defined half-samples. The “young” participants contrast
analysis (<35 years) reported significantly lower GMV in the posterior
cerebellum only (Figure 3, Table S1). Furthermore, the “old” partici-
pants contrast analysis (236 years) reported significantly lower GMV
in a more diffuse pattern than the whole group analysis and involved
a greater number of affected regions. The notable regions in the “old”
group analysis included: the posterior cerebellum, brainstem,
orbitofrontal cortex, caudate nuclei, bilateral posterior insula, bilateral
amygdalae, superior temporal gyrus, posterior cingulate cortex, bilat-
eral posterior parahippocampi, and left fusiform gyrus (Figure 3,
Table S2).
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FIGURE 2 Depiction of the VBM image analysis pipeline as applied in this study. Acronym disambiguation: FAST, FMRIB automated
segmentation tool; FLIRT, FMRIB linear image registration tool; FNIRT, FMRIB nonlinear image registration tool; MNI, montreal Neurological
nstitute (standard brain space) [Color figure can be viewed at wileyonlinelibrary.com]

3.3 | BrainMap behavior, paradigm class, and disease
meta-analysis

MetS-associated regions exhibiting decreased GMV in the cortex (not
including the cerebellum and brainstem) from the whole sample
(n = 208) were associated with cognitive reasoning (z = 5.4), emotional
valence (z = 5.4), and reward paradigms (z = 6.7). These regions were
also found to be similar in gray matter pathology to Huntington's
disease (HD; z = 3.6) and AD (z = 3.0; Figure 4). A z-score of 23.0
is considered statistically significant using this method (Lancaster
et al., 2012).

No statistically significant findings were reported for the “young”
half-sample subgroup (n = 104). Cortical brain regions did not exhibit
any significant GMV differences in this analysis. However, findings of
significantly lower GMV in the posterior cerebellum were reported.

MetS-associated regions exhibiting decreased GMV in the cortex
from the “old” half-sample subgroup (n = 104) were associated with
cognitive reasoning (z = 6.0), fear modulation (z = 3.7), music composi-
tion (z = 3.6), audition perception (z = 3.3), reward paradigms (z = 7.7),
face monitor/discrimination paradigms (z = 4.3), pitch monitor/
discrimination paradigms (z = 3.7), and music comprehension para-
digms (z = 3.6). These regions were also found to be similar in gray mat-
ter pathology to AD (z = 4.9), HD (z = 4.5), and schizophrenia (z = 4.2;

Figure 4). Definitions for these terms can be found in Table S3.

4 | DISCUSSION

Two of the three hypotheses put forward in the present study were
supported by our findings. The first hypothesis, that a discrete pattern
of GMV differences would be identified in individuals with MetS, was
strongly confirmed. Specific GMV reductions were found in the cerebel-
lum, brainstem, OFC, caudate, amygdala, insula, and superior temporal
gyrus, among others. Additionally, age-related effects were observed in
two separate post hoc young versus old analyses from the larger group
sample, suggesting increased age-related effects influencing GMV
between MetS participants and metabolically healthy controls. The
second hypothesis—that patterns of GMV loss would recapitulate AD
pathology—was weakly confirmed in the overall analysis. BrainMap's
disease inference function identified AD's pattern of GMV changes as
the neurodegenerative disease pattern most closely resembling our
MetS VBM findings. This was especially noticeable in the “old” half-
sample analysis. HD and schizophrenia were the other diseases
exhibiting significant similarities in GMV loss with MetS. Importantly,
the hippocampus, a region prominently affected by AD, demonstrated
no GMV reductions in our study. Although other regions implicated in
AD pathology did exhibit GMV reductions, such as the insula, amygdala,
and caudate nuclei. Finally, a BrainMap meta-analysis of task-activation

functional studies of the neural signature of MetS gray matter atrophy
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FIGURE 3 VBM cluster analysis of statistically significant gray matter structural changes associated with MetS across all subjects (a), subjects with
age range below total subject median (“young”) (b), and subjects with age range above total subject median (“old”) (c). Regional GMV was reduced
significantly across all subjects in the caudate nuclei bilaterally, right posterior insula (r. Pl), right superior temporal gyrus (r. STG), lingual gyrus, left
posterior parahippocampus (I. PPH), right superior frontal gyrus (r. SFG), right medial frontal gyrus (r. MFG), right amygdala, right middle temporal gyrus
(r. MTG), ventromedial prefrontal cortex (VMPFC), periaqueductal gray (PAG), pons, left cerebellar tonsil and posterior cerebellum (a). Regional GMV was
reduced significantly among “young” subjects in the left cerebellar tonsil and posterior cerebellum (b). Regional GMV was reduced significantly among
“old” subjects in the right precentral gyrus, right insula, left lateral posterior nucleus of the thalamus (I. LPN), caudate nuclei bilaterally, r. STG, cuneus,
posterior insula bilaterally, PPH bilaterally, amygdala bilaterally, right orbital gyrus, right rectal gyrus, left fusiform gyrus, PAG, pons, left cerebellar tonsil
and posterior cerebellum (c). All values are FWE-corrected (p < .05) and were not further correct for the total number of VBMs performed (i.e., 3) since
the post hoc age-defined half samples were independent of the large primary analysis [Color figure can be viewed at wileyonlinelibrary.com]

mask revealed significant associations with regions involved in cognitive

reasoning, emotional valence, and reward perception.

4.1 | Cerebellum

Decreased GMV in the posterior cerebellum was the most significant and
consistent regional difference in MetS across all age groups. The effects of
decreased cerebellar GMV tend to vary depending on the cerebellar-
subregion where differences are seen. For instance, a commonly cited
cause of cerebellar damage is alcohol dependence. Previous VBM studies
have identified GMV in the vermis and anterior cerebellar regions—regions
known to be involved in motor control and coordination—as significantly
lower in alcoholics versus nonalcoholics (Mechtcheriakov et al.,, 2007). In
contrast, atrophy in the posterior region of the cerebellum is attributed to
“slowness,” defined as slow reaction time and walking speed (Chen et al.,
2015). The effects of posterior cerebellar degeneration have been further
supported by functional studies demonstrating that cortical regions signifi-
cantly co-activating with the anterior cerebellum are the association motor
areas and those most significantly co-activating with posterior cerebellum
are regions implicated in cognition (Riedel et al., 2015). Furthermore, lesion
studies investigating the effects of regional damage to the posterior cere-
bellum have identified deficits in executive function, visual spatial
processing, linguistic skills, and regulation of affect (Schmahmann, 2004).

This collection of symptoms termed “dysmetria of thought” have since

been given the name of Cerebellar Cognitive Affective Syndrome, also
known by its eponym as Schmahmann's Syndrome (Schmahmann, 2019).

4.2 | Brainstem

Our study demonstrated significant MetS-associated decreased GMV in
the pons and periaqueductal gray (PAG) regions of the brainstem. Human
studies have shown that increased hemoglobin Alc, another blood glu-
cose measure, is independently associated with the severity and progno-
sis of brainstem infarcts, primarily involving the pons (Li et al., 2012).
Decreased activity in the PAG is associated with increased levels of pain
(migraine-like headaches, fibromyalgia, nonspecific back pain) and anxi-
ety. Animal studies have also found that diabetes-related neuropathic
pain is associated with a decrease in functional activity of the PAG
(Paulson, Wiley, & Morrow, 2007). Of note, forebrain projections to the
PAG arise predominantly from the prefrontal cortex, insular cortex, and
amygdala (Linnman, Moulton, Barmettler, Becerra, & Borsook, 2012),
structures implicated in our study's neural signature of MetS. PAG atro-
phy can thus serve as a potential neuroimaging biomarker responsible for

increased levels of generalized pain symptoms in MetS patients.

4.3 | The appetitive network

Regions in the appetitive network are involved in appetite-related

behaviors such as craving, feeding, and satiety. It consists of the lateral
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FIGURE 4 Specific behavioral (a), paradigm class (b), and disease weightings (c) on the MetS atrophy mask in all subjects and in “old” subjects
(d-f). Mask regions of interest are FWE-corrected (p < .05) as coordinate-based search function. Functional characterization of MetS volume loss
mask is based on behavior domain (a,d) and paradigm class (b,e) meta-data of the BrainMap functional database representing peak functional
domains related to mask regions. Structural characterization of MetS volume loss mask is based on disease classification meta-data of the
BrainMap VBM structural database representing peak structural atrophy domains related to mask regions (c,f). Disease class disambiguation:
Antisocial personality disorder (APD), temporal lobe epilepsy (TLE), major depressive disorder (MDD), frontotemporal dementia (FTD), mild
cognitive impairment (MCI). Only paradigms fulfilling a z-score threshold 22.0 are reported, with z-scores of 23.0 deemed statistically significant

[Color figure can be viewed at wileyonlinelibrary.com]

hypothalamus and the reward circuit, which includes the OFC, caudate,
insula, amygdala, nucleus accumbens, substantia nigra, and ventral teg-
mentum (Kenny, 2011). Hyperactivation of the appetitive network has
been hypothesized to lead to overeating and obesity. Individuals with
high trait reward sensitivity have demonstrated increased neural activ-
ity in the appetitive network when exposed to highly palatable foods
such as pizza and chocolate cake (Beaver et al., 2006), including obese
patients (Rothemund et al., 2007). As weight increases, deficits in the
brain's appetitive network emerge. For example, deficits in the caudate
nuclei have led researchers to speculate that partial reward hypo-
sensitivity may perpetuate the overconsumption of palatable foods as a
compensatory mechanism for reward deficits (Kenny, 2011). As the
motivation to consume palatable food increases, the hedonic value
from the consumption of such foods decreases. These observations
could have broader implications for neurocognitive functioning in other
behavioral-cognitive domains involving overlapping brain structures
(Cornier, 2011).

The OFC is an integral part of the cognitive processes related to
decision-making, emotion valuation, and reward perception. This
region also comprises the secondary taste cortex, a region responsible
for the representation of the reward value of taste (Price, 2007). Fur-
thermore, dysfunction in the OFC has been attributed to the

overconsumption of food in obese patients (Cameron, Chaput,
Sjodin, & Goldfield, 2017).

The caudate nuclei are involved in the modulation of inhibitory
control, goal-directed actions, and procedural learning. Reduced activ-
ity in the caudate nuclei is associated with obesity in older adults
(Green, Jacobson, Haase, & Murphy, 2011). Additionally, adolescents
with T2DM have been found to exhibit reduced GMV in the caudate
nuclei compared to metabolically healthy age- and weight-matched
controls (Nouwen et al., 2017).

The insular cortex is predominantly associated with emotion, empa-
thy, self-awareness, and interoception. It also processes information
related to the hedonic valuation and taste of food (Small, 2010). The
right insula in particular, has previously been reported to show GMV
loss in MetS after correcting for allostatic load (Zsoldos et al., 2018).

The amygdala lends affective significance to perceived stimuli and
enhances memory for emotionally-relevant stimuli. Its activity
increases in response to hunger, particularly when exposed to high-
calorie palatable food (Goldstone et al., 2009). FDG-PET studies show
that increased levels of circulating insulin are correlated with
decreased activity in the right amygdala and cerebellar vermis relative
to whole brain, possibly explaining an individual's impaired emotional

response to high-calorie food (Anthony et al., 2006).
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4.4 | Relation to AD, HD, and schizophrenia

The incidence and progression of AD is thought to be influenced by
metabolic diseases, dysregulations, and comorbidities (Stranahan,
2015). In the Rotterdam Study (the first study to propose this link)
T2DM was associated with a twofold increased risk of developing AD
and all-type dementia (Ott et al., 1996). An association that has since
been replicated in more recent studies (Arvanitakis, Wilson, Bienias,
Evans, & Bennet, 2004; Chatterjee & Mudher, 2018). In our study we
found a modest relationship between the MetS neural signature and
that of AD, as shown in the BrainMap VBM meta-analysis. This is a
relationship that conspicuously does not include the hippocampus.
MetS, obesity, HTN, dyslipidemia and T2DM all are associated with
an increased risk of developing AD and other dementias. However,
the reverse could also be true; for instance, that neurodegeneration
contributes to the development of metabolic disease (Biessels & Rea-
gan, 2015). Therefore, although AD may moderately correlate with
MetS, we consider our findings to only weakly support the relation-
ship. We speculate that it is possible that AD-like symptoms are
exhibited by certain individuals with MetS because of overlapping
structural involvement, yet do not reflect the same underlying patho-
physiological mechanism.

HD is a heritable neurodegenerative disease implicating the basal
ganglia and cerebral cortex. Patients in advanced states of the disease
are known to exhibit poor glycemic control and progressive weight
loss (Aziz, Swaab, Pijl, & Roos, 2007). However, research within the
past decade has shed light on the role that obesity-induced inflamma-
tion can play in the pathogenesis of HD. For instance, it has been
demonstrated that insulin resistance and decreased circulating insulin-
like growth factor 1 (IGF-1) can accelerate HD onset in individuals
with the genetic predisposition (Lalic et al., 2008). Furthermore,
mouse models have also indicated that mutations in the huntingtin
gene expressed in the hypothalamus may be the causal factor for met-
abolic abnormalities seen in the disease, such as: impaired glucose
metabolism, insulin resistance, and leptin resistance (Hult et al., 2011;
Procaccini et al., 2016).

Schizophrenia is a neuropsychiatric disorder in which patients
exhibit dysfunctions in language, behavior and affect, often in the
form of delusions, hallucinations, and disorganized speech that tend
to present in early adulthood. Among neuropsychiatric disorders, the
association between schizophrenia and obesity is well documented
(Saha, Chant, & McGrath, 2007). Moreover, a commonly cited associa-
tion between schizophrenia and metabolic syndrome is thought to be
treatment-emergent. A number of second-generation anti-psychotic
drugs, most notably olanzapine, have been shown to cause weight
gain, metabolic syndrome, and T2DM. It is thought that olanzapine's
appetite-stimulating effects via its antagonistic actions on the seroto-
nin 5-HT,c and dopamine D, receptors contribute to its metabolic
disease side-effects (Patel et al., 2009). One key limitation for the
BrainMap VBM database is its absence of flags indicating whether
patient populations in VBM analyses suffer from metabolic com-
orbidities such as metabolic syndrome or obesity. We believe that

schizophrenic patients on antipsychotics such as olanzapine might be

weighing VBM effects related to MetS. However, more evidence is

needed to support this speculation.

4.5 | Mechanisms of atrophy

Trophic effects associated with gray matter have been attributed to
four primary mechanisms: transneuronal spread, nodal stress, trophic
failure, and shared vulnerability (Zhou, Gennatas, Kramer, Miller, &
Seeley, 2012). We believe that trophic failure, involving the subcellular
dysfunction of trophic factors such as insulin, insulin-like growth factor,
and leptin, is a likely mechanism for explaining our findings that is worth
exploring (Verdile, Fuller, & Martins, 2015). When trophic factor
expression and regulation is impaired, trophic failure in the form of poor
cellular and synaptic maintenance hinders gray matter structural integ-
rity (Fornito, Zalesky, & Breakspear, 2015). Shared vulnerability is also a
likely candidate since similar neuronal cell types can be the targets of
disease-specific changes due to shared genetic and metabolic profiles
(Cioli, Abdi, Beaton, Burnod, & Mesmoudi, 2014). For example, animal
models of obesity and wild-type mice fed high fat diets have found
associations with dopamine-dependent mesocorticolimbic-prefrontal
alterations which could impact reward learning, motivation, and execu-
tive functions (Stoeckel et al., 2016). In summary, a number of potential
mechanisms emerging in the periphery that disturb the normal neuro-
physiological processes in gray matter can, collectively, be used to

explain our reported findings.

4.6 | Limitations

The criteria used to describe the metabolically healthy and MetS
groups were a mixture of the IDF and NCEP-ATP Il classification sys-
tems with the notable absence of BP values in 57.4% of our samples.
Although this limitation was addressed using sophisticated statistical
methods involving available observations and related biometric data,
the absence of directly measured BP values stands as a limitation. The
nature of our choice for defining metabolically healthy controls and
MetS participants as meeting a composite score of IDF and NCEP-
ATP Il criteria may differ from criteria used in other studies, especially
in different ethnic populations. Importantly, the criteria chosen to
define our samples was optimized for the dataset available.

This study focused on identifying GMV differences associated
with MetS. The pattern identified moderately correlates to neurode-
generative diseases involving gray matter as HD, AD, and schizophre-
nia. Microinfarcts and other vascular-related events are also known to
play a role in the pathophysiology of neurodegeneration (e.g., blood-
brain barrier breakdown, white matter lesions, and inflammation;
Stranahan, 2015). Given the strong evidence for small vessel disease
in the comorbidities of MetS, it could be argued that white matter
integrity is also an important parameter to investigate (Van
Bloemendaal et al., 2016), and we agree. However, an important part
of the present study was to establish a link to cognition. White matter
integrity as assessed by various imaging modalities does not predict

cognitive status as well as gray matter (Lansley, Mataix-Cols, Grau,



2 | WILEY

KOTKOWSKI ET AL.

Radua, & Sastre-Garriga, 2013). Nevertheless, a subsequent investiga-
tive report addressing white matter involvement in MetS is underway.

Sex-based differences in BMlI-related responses to food cues,
identified using functional MR, indicate the presence of significant
regional differences in brain activity between males and females
(Atalayer et al., 2014; Cornier, Salzberg, Endly, Bessesen, & Tregellas,
2010). Although studies have shown that individuals with MetS
exhibit worse cognitive performance with increasing number and
severity of MetS components (Yaffe et al., 2004; Cavalieri et al.,
2010), no study to our knowledge has demonstrated that gender dif-
ferences are related to reduced GMV in MetS or T2DM.

The association between MetS, T2DM, obesity, and cognition has
been well-characterized using psychometric evaluations (Yates et al.,
2012). In this study, we demonstrated that regions associated with
MetS also are related to cognition, supporting reports from the litera-
ture that link peripheral metabolic dysfunction to impaired emotion
salience and cognition (Cameron et al., 2017). Nevertheless, we did
not probe psychometric scores available to us in in the GOBS dataset
on a per-subject level. For the purposes of this study, we ensured that
participants were nondemented and did not differ in level of educa-
tional attainment.

Finally, we intentionally chose to use a cohort of geographically
and ethno-culturally homogenous Mexican-Americans from an
extended pedigree due to the genetic and environmental predisposi-
tion for developing MetS in this population. However, in selecting
these participants, we did not account for family or household effects.
We encourage others to reproduce our findings in other ethno-

cultural populations.

5 | CONCLUSION

We report that MetS is associated with reduced GMV, a finding that
is amplified with age. Gray matter regions associated with MetS
include the posterior cerebellum, brainstem, and regions involved in
the appetitive network such as the orbitofrontal cortex, caudate,
amygdala and insula. Functionally, these regions were identified to
correlate with reward perception, reasoning and emotional valence.
Patterns of atrophy also indicated similarities to those seen in AD, but
failed to recapitulate its most important features, namely hippocampal

involvement.
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